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The relevance of partially ordered sets (or posets) in a wide diversity of contexts in chemistry 
is emphasized, and the utility of distance functions (or metrics) on such posers is noted. First a 
notion of "scale similarity" is introduced to make comparisons within certain so-called 
"scaled" posets, for which there is formulated natural "comparators", which in turn lead to 
associated distance functions. Beyond taking note of several chemically relevant examples of 
these "scaled" posers and their consequent associated similarity measures, a second chemically 
relevant class of so-called "shifted" posers is similarly developed, with examples. Even further 
extension of some aspects of the current approach is indicated, and fmally the multi-posetic 
character of chemical periodic law is suggested. 

1. Introduct ion  

Similarity of  molecular  structures is of  key interest in assessing physical, chem- 
ical, and biological properties of  different molecular  species. See, e.g., ref. [1] for a 
recent review concerning molecular  similarity, and ref. [2] related to the relevance 
of  molecular  shape. Moreover  gauging similarity and dissimilarity may  be viewed 
to be at the heart  of  chemical periodic law, e.g., as discussed in [3]. But natural ly 
similarity is of  wider interest even in many  other sciences and mathematics  too. In 
geometry  similarity has a comparably more precise ( though perhaps narrower)  
meaning,  in terms of  the so-called similarity transformations:  reflections, rota- 
tions, translations, dilatations, and combinations thereof. 

Here  as a starting point the idea of  "scale similarity" is to be initially developed 
in a general fashion maintaining some of  the flavor of  the geometric meaning,  while 
also being applicable in treating "molecular  similarity" as well as "dissimilarity".  
More  particularly the general ideas specialize to enable one to compare: 

• general shapes (as of  molecular  electron-density contours) as discussed in 
section 3, 

• conformat ions  of  points (e.g., as correspond to the geometric a r rangement  of  
nuclei in a molecule) as discussed in section 4, 
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• distance functions on graphs (as with the graphs possibly representing molec- 
ular structures) as described in section 5, 

• matrix eigenspectra (such as may correlate to molecular energy-level patterns) 
and (e.g., electromagnetic) transition spectra as indicated in section 6, 

• distributions (as occur in statistical problems) over a common domain as dis- 
cussed briefly in section 7 (and later). 

In comparing distinct items say A and B in any one of these categories, that one 
item A "exceeds" (or is "greater than") B in some sense might sometimes seem 
clear, while in other cases it might be ambiguous whether either A or B "exceeds" 
the other. For instance, in the first category above one might seek to compare a 
square shape and a circle shape cut from a sheet of paper, whence (as indicated in 
fig. 1) the square might exceed the circle in the sense that the square can cover the 
circle, or the circle might cover the square, or perhaps neither will be able to cover 
the other. In fact in all these categories one may view the items under comparison to 
be members of what mathematically [4,5] is termed a partially ordered set (or 
poset). A partial ordering relation L-_ on a set p is a binary relation such that 

A E ~ = ~ A ~ _ A ,  

A ~ _ B a n d B ~ - A = t . A = B ,  for A,B E p ,  

A ~ _ B a n d B > - _ C = ~ A ~ C ,  forA ,B ,  C E p ,  

and then p is called a poset. This concept is now recognized to occur frequently in 
mathematics, with the explicit definition going back a century [6], though Birkhoff 
[4] notes the idea occurs in a "fragmentary way" in Leibniz's work. Moreover, 
Ruch [7] has argued that such mathematical posets, especially those consisting of 
distributions (under the so-called "majorization" partial ordering), occur in a fun- 
damental manner throughout chemistry and other sciences as well. In fact, in eco- 
nomics [8] and sociology [9] such posets have been explicitly considered. But too, 
they should be important in ecology [10] where various distributions (and thence 
too, their comparison) are of central relevance. In biology shape comparison [11] is 
of interest, so that posets of the first category could be of use. Another partial 
ordering occurring in biology is that of A being an ancestor to B, as is of central 
importance in phylogeny [12] - but such partial orderings might also be of relevance 
in chemical-synthetic networks, and particularly the fundamental investigation of 

Fig. 1. Illustration of the 3 possible interrelations between a square shape and a circle shape. 
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molecular evolution [13]. In mathematics Rota [14] has advocated that posets fun- 
damentally underlie the whole field of combinatorics, and this view seems to be 
often taken in more recent combinatorics texts. 

From a moderately general viewpoint in section 2 focus is directed to a somewhat 
special type of so-called "scaled" poset and some consequent properties are devel- 
oped. In particular there are developed distance functions (or metrics) which allow 
comparisons between members of the poset p, whether or not the members are 
ordered by the relation _L-. In general a distance (or metric) on a set S is a function d 
from the Cartesian product S x S to the nonnegative reals such that 

a(A, = a(S, A) >i O, 

a (A ,S)  = O , ,  A = B,  

a(A, 8) + a(8, C) C) 

for arbitrary A, B, C E S. A function d satisfying the first and second conditions 
(and not necessarily the triangle inequality) would be a less specific comparator 
function which is termed [15] a semimetric. A function d is a pseudometric iffit satis- 
fies the first and third conditions as well as a weakened version of the second condi- 
tion, wherein just: A --- B ~ d(A,  B) --- 0. Here in sections 3,4,5,6,7 the different 
chemically relevant realizations of such scaled posets, as arise in the already indi- 
cated examples, are described in more detail, and the consequent metric-related 
comparators are indicated. In fact, the development in terms of posets may be 
viewed as a generalization of certain earlier ideas [16,17,18] for particular cases of 
the delineated applications. But beyond the unification achieved the current results 
when specialized back to these particular cases still extend the earlier results, espe- 
cially as regards measures of dissimilarity. Further in section 7 a way to " turn"  a 
general poser into a scaled poset is indicated. 

Section 8 considers a parallel development of the ideas involved in treating 
another class of so-called "shifted" posets, with associated metric-related ideas. 
This class includes the distribution-based posets mentioned in section 7 but now 
treated in a less restrictive way. Section 9 returns to the characterization of molec- 
ular shape, and after this to a characterization and measure of molecular symmetry, 
such as has already been of some interest [2,19,20]. Section 10 considers briefly 
the chemically much-studied [7,21,22] "majorization" partial ordering of Young 
diagrams as an example of shiftable posets. Indeed this majorization poset has been 
extensively studied outside of chemistry [8,9,23], and within chemistry it seems to 
have arisen several times [24,25] without emphasis of the relevance of the general 
theory ofposets. Our distance-function results for this poset may be viewed as less 
general than Ruch's (partially-ordered) "direction-distance" functions [22], but 
with this recognition a parallel generalization for the other chemically relevant 
posets we have noted seems an interesting idea. An extension in a different direction 
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in "closer" context to sections 2 and 8 is briefly indicated in section 11. Finally 
section 12 returns to the matter of periodic law and its relations to posets. The over- 
all ideas seem to be of wide potential applicability, presumably even outside of 
chemistry. 

2. Scaled posets 

Granted a poset p we say that it is scaled provided: first, that p is closed under 
scalar multiplication by elements of the set N+ of positive reals with multiplication 
by 1 leaving each element of p invariant, i.e. 

A E p a n d k E  N+ =~ k. A E p a n d l . A = A  

and second, for A C p and h, k E N+, 

(hk) . A = h. (k. A) , 

h>.kandA~-B ~ h . A ~ k . B .  

Next granted such a scaled poset p a comparator c(A ,7 B) for A, B E p is defined 
to be the least value ofx E ~+ such that x .  A exceeds B -  i.e. 

c(A/~ B) =_ min{x E ~+ I x .  A _>- B}, 

(and if no such minimum exists one might say c(A 7 B ) =  oo). Evidently 
c(A ,/" B) is a factor needed in order to "circumscribe" A about B. Moreover we de- 
fine A, B E p to be scale equivalent, the condition of which we denote by A ..~ B, iff 
c(A ,/" B)c(B 7 A) = 1. A few fundamental properties of our comparator are 
identified in the following: 

THEOREM A 
For A, B, C members of a scaled poset ~, 

1/c(A/~ B) = max{x [ A >-_ x .  B}, 

c(A/~ B)c(B 7 A) >/1 with equality iff A ~ B, 

c(A /~ B)c(B 7 C) >>, c(A ,/~ C). 

But before proving this let us "interpret" these properties. First the maximum 
appearing in the theorem defines a factor (which we might denote c(A J B)) evi- 
dently to "inscribe" B into A, and the theorem says this inscription factor is simply 
the inverse of the circumscription factor when the compared objects are inter- 
changed for application of the scale factor. The second inequality when rewritten 
as c(A 7 B) >t c(A J B) simply says the factor to achieve circumscription (of A 
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about B) must be as large as the factor to achieve inscription (ofB within A). Finally 
the last "telescope" inequality says that if that in applying two rescalings first to cir- 
cumscribe A about B then to circumscribe this result about C, one has in fact 
achieved (or overachieved) circumscription of A about C. 

Now the proof of theorem A actually follows fairly closely the preceding "inter- 
pretations". First evidently 

c(A J B) = max{x ] x -1. A _>- B} 

so that this maximum x value is a minimum x -1 value as appears in the definition 
ofc(A ~ B), so that {c(A J B)} -1 = e ( A / :  B). For the second inequality of the 
theorem we note that 

{c(B / A ) c ( A  / B)}. A = c ( B  / A )  . ( c ( A  / B )  . A }  >-_ c(B / A) . B ± A .  

But from the scaled-poset definition 

h<~l ~ A  > - h . A  

so that for h.  A _ A we must have h ~> 1, and in particular the second result of the 
theorem is obtained. For the final result we proceed similarly 

{c(B / C)c(A  / B)}-A >- c(B / C)-B_>- C 

whence the telescoping inequality follows. 
In view of this theorem for A, B E p we might define 

m ( A  ~ B) = {c(A 7 B ) / c ( B  / A)} 1/2 

as the mean magnification to bring A to (an intermediate sort of"opt imal"  compar- 
ison with) B. 

Also of interest for A, B E p is the interlacing comparator CA,S defined as the 
minimum (or infimum) value x E N+ such that 

x . A > - B > - _ x - I . A .  

Evidently the inequality condition implies 

x -  B >-_ x .  (x  -I • A)  = A = x - l  . ( x .  A)  ~ x - l  . B 

so that cA,B is symmetric in its arguments. Also this inequality implies 

x . A >- x - l  . A ~ x2 • A >-- A ~ x2 >~ l 

so that x/> 1, with in fact equality implying A = B. Further on comparison of the 
defining conditions for CA,S with those for c(A 7 B) and c ( B / :  A)  one sees that 
e A , ~ m u s t b e t h e m a x i m u m o f c ( A / :  B ) a n d  c(B 7 A). Finally for A, B, C E 9, 

CA,B (C&C C) ~ cA,~ . B >- A >" c -I  . B ~ c -I -I • " - - - A,B - -  A , S ' ( % c ' C )  

so that on comparison with the defining inequality for cA,c one sees that these inter- 
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lacing comparators satisfy a sort of telescoping inequality, with cA,scs,c at least as 
great as cA,c. In fact we have established: 

THEOREM B 

For A, B, C members of  a scaled poset go the interlacing-comparator function 
satisfies 

CA,B = CS,A = max{c(A / B), c(B /~ A)} ~> 1, 

cA,s = 1 = ~ A = B ,  

CA,~CB,c >1 CA,C . 

One may think of cA,B as some minimal scale change which when applied to A cir- 
cumscribes it about B and when applied to B circumscribes it about  A, thereby, 
"interlacing" A and B. Next we define an interlacing distance 

di(A, B) -- 2.  log ca,B, 

and a form distance 

df(A,B) - I  logc(A 7 B) I + I logc( B 7 A) I • 

This of course turns out to be good nomenclature if these are distance functions 
(or metrics) as defined in the introduction. In fact as rather directly follows from 
our preceding theorem we have: 

THEOREM C 

The functions di and df are distance functions on the scaled poset go. 

In addition to the ratio of c(A/~ B) and c(B/~ A) appearing in m(A ~ B) one 
might surmise that the product of such a pair of comparators also would be a nat- 
ural piece of information concerning the relation between A and B. Particularly 
since the product  encodes a multiplicative difference between "circumscription" 
and "inscription" factors, this product  would seem to represent a degree of geo- 
metric dissimilarity. Thence we define a similarity distance between A and B, 

ds(A,B) = log{c(A 7 B)c(B 7 A)}. 

Again such a name would be most  reasonable if ds were to turn out to be some 
sort of distance function (or metric), as indeed theorem A rather readily implies it 
is:  

THEOREM D 

The function ds is a pseudometric on the scaled poset go and is a distance function 
on the set of  scale equivalence classes of go. 
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The last two theorems may  be picturesquely interpreted, as indicated in fig. 2. 
In conjunction with this interpretation it is readily seen that ds(A, B)<~df(A, B) 

di(A, B), with equality in the second instance iffA ~ B. 

3. Shape comparison 

Here the poset p considered is comprised from closed subsets of  a Euclidean 
space 8, and the partial ordering is based upon set inclusion. More  properly p con- 
sists of  chiral-potent isometry equivalence classes of  connected subsets of  £ - that  
is, each A consists of  all translations a n d / o r  (proper) rotations of  a representative 
of  A. Indeed sometimes one does not  distinguish A from its representative. For  the 
partial ordering we say that  A >-_ B iff there exists a set in the class A which is a sub- 
set of  a set in the class B. The scalar multiplication of  A corresponds to the requisite 
dilatation of  its consti tuent members.  The comparators  c(A ,7 B) and c(B Z A) 
are illustratively indicated in fig. 3 - and they have been proposed by Mezey [16] as 
useful shape descriptors, especially in characterizing molecular electron-density 
contours,  which in turn [2] are of  use in characterizing molecular  properties. The 
compara tors  m(A ---, B); df(A, B) and ds(A, B) can be argued to have very natural  
interpretations: first, m(A ~ B) represents a degree of  discongruence (i.e., a dis- 
similarity modulo  rotat ion and translation); second, df(A, B) represents an inter- 
form distance modulo  rotat ion and translations; and third, ds(A, B) represents an 
intershape distance modulo  rotation, translation, and dilatation. 

With these distance functions in hand, they may  be utilized for measures of  the 
"degree of  symmet ry"  or the "chiral i ty" of  a molecule, such ideas having been 
much  discussed recently [20]. For  instance, with regard to "chiral i ty" of  a molec- 
ular shape A, one can proceed with A* denoting its mirror  image, whence df(A, A*) 

/ 
Fig. 2. A picturesque interpretation of theorems C and D. The two elements A and B of p are repre- 
sented by points, and their associated scale equivalence classes are represented by parallel (near verti- 
cal) lines. The distance di(A, B) between A and B is indicated by the longer dashed line, while the 
distance d,(A,B) between the two equivalence classes is represented by a shortest length between the 

two solid lines, one such length being indicated by the shorter dashed line. 
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Fig. 3. An illustration of the present ideas for A and B being diamond and ellipse shapes in the 2- 
dimensional Euclidean space g2. First in the upper central part  of  the figure a diamond and ellipse are 
translated and rotated to bring them into a maximum extent of correspondence. Then two different 
dilatations are made: first the ellipse is dilatated by a factor of  0.5 to yield the first covering; and sec- 

ond, alternatively the diamond instead is dilated by a factor of 2.8 to yield the second covering. 

is a measure of the degree ofchirality of A (and of A*). An extended notion of degree 
of chirality (allowing for dilatations in addition to proper rotations and transla- 
tions in drawing equivalences) is provided by ds(A, A*). The degree ofF-symmetry 
(where ~ is some suitable point group) of a shape A would be df(A, Aa) where A~ is 
some suitable symmetric reference. If GA denotes the shape to which A is carried 
by G E ~, then quite reasonably Aa is the union of these different GA, 

A~ = U G A .  
GrG 

Here df(A, Aa) is a symmetry measure with respect to a particular group ~ having 
center and axis located and oriented in a given manner relative to A. Often the 
degree of symmetry of interest might be that minimal value obtained through varia- 
tion of the location and orientation associated to ~. 

There are other possible modifications of the partial ordering. Each equivalence 
class of p involves transformation of some representative member of A E p by a 
(sub)group ~ of similarity transformations on g, and this group ~ could be chosen 
differently, e.g., to include reflections whence the standard mathematical (achiral) 
isometry equivalence classes are obtained. Also in the preceding paragraph there 
is a second group ~'  of isometric transformations, and this subgroup of ~ can be 
chosen in different ways. E.g., ~o might involve just rotations and translations of 
molecular shapes along a 2-dimensional surface to which the molecules might hap- 
pen to be confined (as often occurs in catalytic processes). 

Of course the shapes indicated here for consideration are typically continuous, 
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with a continuum of possibilities for translation and rotation. The operations 
involved in comparison can be made more generally manageable if instead one 
characterizes a shape thusly: first, choose a finite set of characteristic points; sec- 
ond, condense the shape information to be retained just to the finite list of distances 
between these points; and third, proceed as in the next section. Indeed for biotaxo- 
nomic purposes just such an approach has been advocated [26] -the corresponding 
points (e.g.) on animal skulls of different (sub) species being long known as "homo- 
logous". For the case of smooth electron-density surfaces the characteristic set of 
points could be chosen as the so-called [27] "critical" points whereat derivatives in 
every direction are 0 or infinite, and there are two ways to choose the interpoint dis- 
tances: through (3-dimensional) space or along surface geodesics. 

4. Conformation comparison 

Here the members of the poset ~ are congruence classes of equivalently labelled 
sets of points embedded in a Euclidean space g. That is, each member A E p corre- 
sponds to an embedding, modulo translation and rotation, of a set { 1,2,..., N} of 
points. Thus A is uniquely labelled by an N by N matrix D(A) of Euclidean dis- 
tances Dq(A) between pairs of points {i,j} of (a conformation of) A. The partial 
ordering is such that A ~ B iff 

Dij(A)>/Dq(B), all i,j E {1,2, . . . ,N}.  

The scalar multiplication of section 2 corresponds to dilatation of the points in 
the representatives in A or equivalently of the usual scalar multiplication of the ma- 
trices D(A). We term such a scaled poset p so represented in terms of matrices a ma- 
tric poset. Now c(A J B) is seen to be the maximum ratio Dij(B)/Dij(A) for 
distinct i,j E {1,2, ...,N}. As an even more particular interpretation the points 
may be viewed to correspond to nuclei in a molecule, whence df(A, B) is a measure 
of dissimilarity between molecular conformations A and B - such measures being 
of much potential interest for structure-property correlations, such as considered 
in [1,2,17,29,30] for other molecular conformation descriptors. 

It may be noted that there is another reasonable pair of comparators other than 
that of section 2 at least when dealing with the present matric posets. To see this 
consider the eigenproblem for the maximum-magnitude eigenvalue A(A/~ B) to a 
distance-ratio matr ixR(A 7 B) with off-diagonal elements 

Rij(A /: B) = Dij(B)/Dij(A ) 

and diagonal elements 0. The indicated eigenproblem 

R(A/~B) IA,TB)=A(A/~B)  I A T B )  

is for a (Frobenius-Perron) matrix [31], with all off-diagonal elements positive, so 
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that it has a (nodeless) eigenvector [ A / B) with all components (i I A / B) posi- 
tive. Now the eigenvalue may be expressed in terms of I A / B)-components 

A(A / B) = y'~{(ilA / B)(j[A / B)(A / B IA / B)-I}R,j(A / B), 

where in general (0 [ is the (complex-conjugated) transpose to the column vector 
[ 0) and (0 [ () denotes the (standard) inner product between [ 0) and ] (). Then, 
with ] ~b) the vector all of whose components are 1, it is seen that 

A(A / B)(A / B IA / B)(~[A / B) -2 

= E { ( i I A  / B)(A / B [j)(q5 [ A / B)-Z}Rij(A / B) 
ij 

is a type of average magnification to bring B into comparison with A (this repre- 
senting an average since the positive terms in brackets on the right-hand side of this 
equation sum to 1). Indeed such a related idea has already been suggested by Randid 
et al.[17], though more in connection with the application of the next section. 
Here we define a comparator 

c'(A / B) = A(A / B)(A /" B [ A / B)/(4) I A / B) 2 

as a sort of average magnification factor. Also we note that there is of course the 
possibility of both R(A / B) and R(B / A) yielding a symmetric pair ofcompara- 
tors d(A/"  B) and d(B / A). Thus in parallel to the development of section 2 we 
might introduce 

c'A,~ -- max{c'(A / B), c'(B / A)}, 

m'(A ~ B) =- {c'(A 7 B)/c'(B , /  A)} 1/2 , 

d[(A --~ B) - 2. log c],B, 

ds(A,B ) = log(c'(A / B)c'(B /" A)}. 

Then "partial" results apply: 

THEOREM A t 
For A, B members ofa matric poset ~o, 

c'(A / B)c'(B / A) >~ 1 with equality iff A ~ B. 

THEOREM B' 
For A, B members ofa matric poset p, 

C l ~ C t A,B B,A >/1 with equality iff A = B o 
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THEOREM C' 

The function d~ is a semimetric on a matric poset p. 

THEOREM D'  

The function d' is a semimetric on the similarity equivalence classes of a matric 
poset p. 

Proofs are found in the appendix. So far it is not known whether d[ or d~ satisfy 
the triangle inequality (as is crucial to deciding whether they are distance func- 
tions). 

With the different points representing the nuclei of a molecular conformation, 
the ideas of this section too may be utilized to define a degree of chirality or of sym- 
metry. With ri representing the nuclear position vectors of A, the reference A~ for 
a symmetry group G is naturally identified with position vectors 

_ 1 ~ Gri. r~, _ I ~ l c e a  

Notably both the degree of chirality and degree of F-symmetry may be defined 
either in terms o f d f  or of(just the semimetric) d•. 

Finally, it may be mentioned that for a general (e.g. molecular) shape an even 
greater condensation of the shape information may be made (than to the list of dis- 
tances between characteristic points, as suggested at the end of the preceding sec- 
tion). Rather generally for shapes in n-dimensional Euclidean space En one could 
keep just the n principle moments of inertia (or their square roots). This gives an n- 
vector (rather than a matrix) of distances, but these may be ratioed much as the 
matrices D(A) and unprimed comparators computed. Such inertia-based 
unprimed comparators do however have a characteristic in common with the 
primed comparators: both entail some sort of an average. Note in the inertia-based 
scheme (or the scheme indicated in the last paragraph of the preceding section) 
the discretized set is in our theorems interpreted as p (rather than the underlying 
shapes) since more than one shape may be identified to the same discretized set of 
shape descriptors. See also the first paragraph of section 7 and the next to last para- 
graph of section 8 for the treatment of n-vectors as distributions. Another possible 
distance function avoiding discretization and using a type of "expansion" other 
than dilatation is found in [27] - this approach being related to the ideas of section 
11. All this along with the earlier ideas of this and the preceding sections then possi- 
bly provide promising new molecular size and shape descriptors, as are of much 
general interest [2,29]. 

5. Distance-function comparison 

Here the poset is to be the set of distance functions on a graph G (or as in the 
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next paragraph on a class of graphs), and the partial ordering may be expressed in 
terms of a distance-ratio matrix much as in the previous section except that now the 
ratio is with respect to two different distance functions on a single set (rather than 
for one distance function applied to two corresponding sets). That is, we have 
another example of a matric poset. The standard distance function on graphs is 
defined in terms of a minimum number of steps in a path between vertex pairs - see 
e.g. [32]. But of course in chemistry it is important to distinguish single and multiple 
bonds (or perhaps also between bonds of different bond lengths), so that it is nat- 
ural to introduce a weighting for the bonds and thence also for paths and associated 
path lengths to yield a modified graphical distance. If paths are given weights that 
are sums of bond weights (e.g., inverse bond orders) and the distance function 
between two vertices is taken as the minimum weight path between the two vertices, 
then the resultant function is a "simple" extension of the standard unit-weighted 
one. But the same chemical arguments leading to such distance diminishment for 
multiple bonds also suggests that a similar sort of distance diminishment should 
apply with multiple pathways between non-nearest neighbors. Indeed there is [33] a 
"new" so-favored (so-called) "resistance" distance. 

Of course for a graph representing a molecule (embedded in Euclidean space) 
there is the ordinary Euclidean distance between vertices. Indeed the bulk of the 
field of "polymer statistics" [34] may be viewed to focus on comparisons between 
the (mean) graphical and Euclidean distances between monomer units, as averaged 
over different polymer conformations. Typically for linear-chain polymers the 
number of monomer units is used in place of a mean graph distance, but for 
branched polymers the relationships are different and are of interest [35,36]. More- 
over Randi6 et al. [17] have argued that a comparison between the ordinary graphi- 
cal distance and Euclidean distance for a graph representing that molecule should 
be a measure of the "foldedness" of that molecule - such a measure presumably 
being of interest in dealing with the important feature of protein folding [29]. This 
earlier proposal for a foldedness comparator is essentially just A ( A / :  B) of the pre- 
vious section, but here we have a more comprehensive suite of available possibili- 
ties, with theromatically guaranteed desirable properties. Too it may be mentioned 
that the pair ofcomparators c(A/: B) and c(B/: A) have been previously consid- 
ered [ 18], though primarily as indicated in the next paragraph. 

The idea of this section may be extended to apply to a class C of graphs, e.g. 
such as the class of all finite connected graphs (perhaps also with limited vertex 
degrees, as often is a reasonable restriction for molecular graphs). The comparator 
c(A 7 B) between two graphical distance functions is taken to be the maximum 
of the corresponding comparators for individual graphs of the class C. Thence for 
that graph-theoretic and Euclidean distances on molecular graphs such that there 
are certain (even) infinite classes (1) it has been argued [18] tighter bounds 
c(A 7 B) and c(B/: A) lead to similar asymptotic functional distance-dependen- 
cies for interatomic interactions. 
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6. Spectral  comparison 

Here the poset is based on the set of Hermitian N by N matrices and the partial 
ordering might be related to the distribution ofeigenvalues. More particularly each 
member A of ~ is a shift equivalence class of matrices Ah ------ A0 + hi where h is an 
arbitrary real number, I is the identity matrix, and A0 is a class representative con- 
veniently taken to be the member of A whose lowest eigenvalue is 0. Every member 
of such a class leads to the same eigenvectors and the same eigenvalue difference 
spectrum (as so often is all that is really of chemical interest). We can imagine the 
eigenvalues of A0 for each A E ga being ordered 

0 =  AI(A)<.A2(A)<.... <,.AN(A). 

Then the first partial ordering of ~ to be considered is: A ~_ B iff 

hi(A)/>hi(B), i = 1 to N .  

Of course the scalar multiplication of A (for the discussion of section 2) entails 
just the ordinary scalar multiplication of the constituent matrices ofA. Evidently 

c(A ,7 B) = max{hi(B)/hi(A) I i = 2, ..., N}.  

The closer di(A, B) is to 0 the closer the eigenvalue spectra of A and B are to differ- 
ing in naught but a shift, and if thermodynamic properties are statistical-mechani- 
cally computed with such A and B identifying Hamiltonian matrices the closer 
many properties (such as specific heat) are to being identical. The closer ds(A, B) is 
to 0 the closer the eigenspectra are to differing only in a shift and rescaling, and 
e.g. the statistical-mechanically computed specific heat comes closer in all but the 
scale of temperature. 

A second related partial ordering on the same set is possible. We say A ___ B if 
A 0 -  B0 is non-negative definite. Indeed this partial ordering has been studied 
mathematically [37]. Again di(A, B) and ds(A, B) (and perhaps also the d~,(A, B)) 
measure deviations of eigenspectra away from a simple shifting and rescaling. A 
third conceivable possibility would treat [38] the set (perhaps of positively shifted) 
eigenvalues as a distribution partially ordered via majorization as in section 10. 

Another related type of application occurs for transition spectra, say for mole- 
cules in an electromagnetic field or for condensed-phase molecules in a phonon 
field. Then there are two relevant matrices A(A) and T(A) which respectively iden- 
tify energy-level differences and transition intensities, such matrices having 
elements 

A i j ( A )  - -  h , ( A )  - h i ( A ) ,  

T/j(A) - [  (Ai(A) ] T ] Aj(A)) ]2 . 

with A labelling a Hamiltonian matrix and T being a transition matrix. Partial or- 
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derings for both types of matrices may be introduced somewhat as in the preceding 
two sections, though for the A-matrices one would say A(B) ~ A(A) means just 
that the nonnegative elements of A(B) exceed the corresponding elements of A(A). 
The partial orderings for the associated posets pzx and PT of matrices then leads in 
a natural way to a partial ordering on the Cartesian product pAX Pr 

(A2xT2)___(A1 xT1)  ¢* A2>-_Ax andT2___T1. 

But rather than apply a single scalar multiple to both A and T in (A x T) it seems 
more appropriate to develop separately the distances d~, ds A and 4 ,  4 for pzx and 
Pr. While one of these posets pzx and pr  might be treated as a scale-invariate poset 
(as in the preceding sections) the other might be treated as a "shifted" poset as 
discussed in section 8. Overall the distances so defined can be imagined to be of use 
to measure similarities of model transition spectra to experimental transition 
spectra. 

7. Scaleability and  mimicry 

As a first extension of incomplete generality, we note that if a poset p may be 
embedded in a larger one p+ which contains p and which is scaled, then one may 
simply use the comparators and distance functions for p as inherited from p+, and 
we might say p is scaleable. A (presumably important) example occurs with p being 
a set of probability distributions with the same support S - that is, p consists of 
all functionsp: S ---, N+ such that 

p(s) > 0, all s C S, and ~ p ( s )  = 1. 
sES 

(In fact as noted in section 9 a slightly stronger condition than having the same sup- 
port S needs to be satisfied: namely that the values ofp(s) in these regions of sup- 
port be bounded below by some positive e.) Evidently under the usual scalar 
multiplication of functions, p is not scaled because of the normalization condition, 
but disregarding this condition one obtains a set p+ which is scaled. Here the unnor- 
malized functions in p+ might be interpreted as some sort of frequencies, though 
this is not required in order to define the comparators and distances on p. A related 
type of problem occurs in "fuzzy set theory" [39] where now p(s) is a "degree-of- 
membership" function with the condition 0 ~<p(s) ~< 1 in place of the normalization 
condition. If one wishes to avoid the presumption of a common support, the ap- 
proach of section 8 might be considered. 

As a rather different general extension it may be noted that corresponding to 
any poset one may usually construct a related scalable poset mimicking the parent 
poset. Given a general poset p a funct ionf  from ~o to the real numbers N is isotonic 
(or partial-ordering homomorphic, or order-preserving, or Schur convex) iff for 
A , B  E ga 
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A >- B =~ f (A)>~f(B) .  

Then for n linearly independent such isotonic functions fl ,f2, ...,f~ taking nonnega- 
tive values there is a non-negative cone of such functions 

C = a~.lai>~O,i = 1 , . . . , n ,  ai > 0 
i=1 

and for A, B E p we can define a comparator c(A Z B) as the minimum value 
x E N+ such that x f (A)  >~f(B) for a l l f  E C. Of course though the cone (2 contains 
an infinite number of functions, one only need check the inequalities for eachJ~ in 
the basis of C. From such comparators the rest of the theory of section 2 follows. 
The construction in terms of isotonic functions may be viewed as actually treating 
the poset Pc with members Ac consisting of sequences (fl (A) , f2(A) , . . .  ,f,(A)) in 
correspondence with A E p - the consequent poset Pc being scaleable (through or- 
dinary scalar multiplication of these vector-like sequences) and serving as a mimic 
forp.  

In a number of circumstances what may actually be available could be naught 
but the mimic Pc. Indeed this viewpoint has already been suggested [40] in consider- 
ing chemical "aromaticity" (of benzenoid species). Here there are [41] several dif- 
ferent standard possible aromaticity measures: from thermodynamic stability, 
from bond lengths, from N M R  chemical shifts (and "ring currents"), or from 
chemical reactivity (of any one of a few different types of reactions). Each such aro- 
maticity measure may be used to give numerical aromaticity indexes ~ ,  each of 
which may be as an isotonic function on the underlying aromaticity poset p. But 
though these indices need not necessarily completely characterize p, they do char- 
acterize the mimic Pc. 

Again, it may be emphasized, that there are frequent examples in chemistry 
where it is the mimic Pc which is more directly available. Such posetic circum- 
stances can be viewed to occur in speaking of the"oxidizing power" of a compound 
- the different isotonic functions f. corresponding to oxidizing strengths (e.g., 
potentials) in a range of different chemical environments. Acidities too might be 
viewed to be similarly partially ordered if one is interested in the (e.g., pH) 
responses of acids in a selected set of different solutions - say in pure water, in sea- 
waters (as relevant for marine chemistry), and in cellular fluids (as relevant for bio- 
chemistry). 

8 .  S h i f t e d  p o s e t s  

The underlying idea behind the development of section 2 can be utilized to treat 
posets which are not necessarily scaled. We say a poset p is shiftediff first p contains 
a scaled linearly ordered subset 
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S={k-s lk~+} 

second p is closed under an addition with the "zero shift" 0 - k .  I for k = 0 leaving 
each element invariant 

A E p a n d S E S  ~ A + S E p  

A E ~ A + O = A  

and th i rd  fo rA ,B  E ~,h,k E ~+, 

A~Bandh>~k  =~ A + h . I ~ - B + k . I .  

Typically we extend the range of  the scalars to allow negative values, with 

A > - B - k . I  ¢~ A + k . I > - B .  

Now instead of  the "multiplicative" (scale) comparators of  section 2 we can intro- 
duce an "addit ive" comparator  of  two elements A and B of  a shifted poset p 

d"(A / B) -- min{x I A + x- I >-_ B}. 

We can recover a "multiplicative" scale comparators  via 

c"(A /" B) - expd"(A ,/" B),  

el, B = m a x { c " ( A / "  B), c"(B/" A)} 

and candidate distance functions via 

a['(A,B) = max{d"(A / B),d"(B /~ A)}, 

a"~a ~) - a"(A / ~) + a"(B / A) 

Further  we say A and B are shift equivalent iff there is a shift relating A and B, 
i.e., there is a real number  x such that A + x .  I = B. The appropriateness of  these 
definitions is revealed through the results: 

THEOREM A" 

For  A, B, C members of  a shifted poset p, 

-d"(A/~  B) = max{x I A _ B + x- I} ,  

c"(A/~ B)c"(B/~ A) >~ 1 with equality iff A ~ B, 

c"(A /" B)d'(s / C)>.c"(A / c). 



D.Z Klein / Similarity and dissimilarity in posets 337 

THEOREM B" 

For  A, B, C members of  a shifted poset 9, 
I I  I I  cA, s = cs, A >/1 with equality iff A = B,  

I I  I I  ~ I I  
CA,BCB, C ~ CA, C • 

THEOREM C" 

The function d 7 is a distance function on the shifted poset ~o. 

THEOREM D" 

The function a" is a pseudometric on the shifted poser ~o and a distance function 
on the shift equivalence classes of 9. 

The proofs parallel those of theorems A,B, C and D in section 2. The quanti ty 
d"(A 7 B )  defined here, as well as the analogous quantity d ( A / ~ B )  
- In c(A 7 B) which could have been defined in section 2, have a fundamental  
interpretation. Either quantity may be viewed as "relative coordinates" thereby 
giving rise to a coordinatized "ruler geometry" [42], whence the schematic of  fig. 2 
becomes of  further relevance. 

One important  example of shifted or shiftable posers involves the distributions 
discussed in the first paragraph of  the preceding section. A distribution p(S) with 
S E ,5 is shifted by adding a common  number  to every argument,  so that  a shift by k 
gives the new distribution p'(S) = p(S) + k. Significantly the constraint of  a com- 
mo n  support  for all compared distributions may now be lifted. Indeed, normaliza- 
tion and nonnegativity constraints may also be lifted, whence we are dealing with 
the set of  all functions from ,5 to ~. In application to probability distributions the 
distance di has been called [43] the "Kolgomorov"  distance [44]. It is also of rela- 
vance for quan tum mechanics [45]. 

In connection with fuzzy set theory our results suggest a means of  measuring 
the "degree of  fuzziness" df (A) of a fuzzy set A, which has a degree of  membership 
function pa (S). A set B is has no fuzziness (exactly) when it is sharp in the sense 
that  Ps(S) = 0 or 1 for all S. So we could take 

df(A) - min{d~'(A,B) [ B is sharp) .  

This though is very sensitive to having even a single element of the fuzzy set A not  
included in a sharp manner.  This sensitiveness may be ameliorated using an average 
over single element subsets 

1 
dAA)  - I ,5 d r (A.  s), 

! SES 

where in general we define the "fuzzy intersection" A • B between fuzzy sets A and 
B as the fuzzy set with degree of  membership function PA.B(S) = PA(S)PB(S), 
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S E S. This average degree of  fuzziness dr(A) has much in common with work of  
others [46]. 

9. Molecu la r  conf igura t ion  and  symmet ry  

The shifted-related distances are particularly relevant in dealing with molecular 
electron densities. Such densities are (almost always) nonzero everywhere in three- 
dimensional Euclidean space 83. Thus though these densities have a common sup- 
port, they decrease very rapidly (e.g., exponentially fast) at distances far from the 
molecular center for finite molecules. Then for two densities p(r) and p~(r) respec- 
tively decreasing asymptotically as e -~r and e -~'r with a ¢ a ' ,  an at tempt to con- 
struct the scale comparators  c(p ,7' pt) would lead to unbounded ratios e -(~-~')r, 
and consequent unbounded scale-related distances between p and p'. (In fact the 
situation is even "worse" for densities typically computationally realized based on 
Gaussian-orbital expansions, with asymptotic behavior of the form exp(-ar2 . )  
One way to at tempt to overcome such difficulties is to treat the scale-related dis- 
tances comparing p and p~ exceed some (small) positive tolerance £ - though ques- 
tions remain as to the choice of the value for g and as to whether the d-functions 
so realized are rigorously still distance functions. Another  approach to the scale- 
related scheme is to consider simultaneous rescaling of densities both with regard 
to their intensity and to their spatial extent - that is, one considers rescalings ofp(r)  
to Up(kr), with/d a monotonic  function o f k  taking the value 1 at the same time k 
does. Most  simply/d = k whence the problem may be viewed as rescalings much  as 
in section 3 but now for a hypersurfaces S[p] in 4-dimensional g4 with Cartesian 
coordinates x0, xl, x2, X3 of which Xl, X2, X 3 identify to r of£3 andx0 is such that  S[p] 
is defined by the region bound by x0 = 0 and x0 = p(r). Another  evidently quite 
trouble-free alternative is to use the shift-related distances. This then provides a 
fundamental  way of comparing different molecular conformations or even differ- 
ent molecules. 

Granted a distance function d(p, p~) between electron densities there follow nat- 
ural measures of  the degree of dissymmetry s_ (p) of density p with respect to a given 
point  group G. Here s_ (p) could be defined as the minimal distance from p to a sec- 
ond density pt of  the requisite symmetry and number  of  electrons. Perhaps more 
simply, instead of seeking p' to minimize this distance one could take p~ to be 

p'(r) =[ ~ I-' Zp(Gr ) ,  
GE~ 

where Gr denotes the new position in ~3 to which r is sent by the point group element 
G C G. The degree of symmetry s+(p) would then be defined in terms of  a positive 
function of s_ monotonically decreasing from 1 at s_ = 0. E.g., 

s+(p) = exp{s_(p)}. 
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Such a degree of symmetry differs from related ones previously proposed [20]. 
The "degree of symmetry adaption" in [19] was formulated for the characterization 
ofwavefunctions, where pure but non-totally (i.e. nonidentity) symmetric irreduci- 
ble representations would also be regarded to have no deviation from full symmetry 
adap t ion-  in this case the present ideas presumably apply also, with shifted-related 
distances measured from the function under consideration to its different irreduci- 
ble-symmetry projections. 

In place of full electron densities similar ideas can be developed in terms of 
more compact characterizations of molecular structure. Such are the molecular 
surfaces of section 3 or the nuclear conformations of section 4. Or one might be 
interested in comparing functions (e.g., as electrostatic potential in [47]) on such 
molecular surfaces, whence the value of this function might be simply viewed to 
add an extra dimension into the mathematical objects under comparison. 

10. Major izaf ion 

One fundamental poset for which shifting transformations are of relevance is 
the majorization poset. Here the members of p are nonincreasing length-n 
sequences ofnonnegative numbers, so that A E p is identified as 

A = (a l , a2 ,  ...,an) with al>>,a2>~ . . .  >~an>~O. 

The partial ordering is such that A ~ B iff 

k k 

Z a i ) Z b i ,  k =  1 , 2 , . . . , n .  
i=1 i=1 

Sometimes the sum of the elements in the sequence is constrained to a fixed value, 
say N. A fundamental result [48] is that one sequence B can be obtained from an- 
other A (each with the same sum N) via a stochastic matrix transformation (as in 
Markov processes) iffA ~ B. Sometimes too the elements are constrained to be in- 
tegers, whence one obtains the so-called Young-Diagram lattice of partitions of 
N. Here evidently we might again shift sequences by adding a common scalar to 
every element of the sequence. In addition to this general poset's relation to prob- 
ability distributions [7,22,23] it has arisen in chemistry in characterizing chirality 
[24] of molecules and in characterizing branching [25] of molecular graphs. In 
mathematics this poset dates back to the turn of the century when Muirhead [49] 
identified a "complete" set of isotonic functions. 

Especially in the Young-diagram lattice case [7] there is a fundamental "dual"  
interpretation. In this case the sequences are represented diagrammatically: A has a 
diagram YD[A] with the ith row being of length ai. See, e.g.,fig. 4(a). We denote 
the length of the ith column by h; and obtain a dual sequence A. In a chemical con- 
text each row might correspond to particles (e.g., molecules) "identified" to the 
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I I  
I 1 

Fig. 4. As an example the Young diagram YD[4,2,1,1] is indicated in (a), and its 1-step (horizontal) 
shifted YD[5,3,2,2] indicated in (b). In (c) the 1-step (vertical) shifted YD[4,4,2,1,1] is shown, and in 

(d) is shown the symmetrically shifted YD[4,4,3,2,2]. 

same type while the columns correspond to particles "distinguished" to different 
types. Notably, 

74 ~ B ¢:~ B ~ A 

so that there is a duality (or complementarity) between "identification" and "dis- 
tinction". Strangely it seems that in the bulk of the work on majorization these 
ideas are overlooked. However, with this duality a second shifting process is possi- 
ble: A is "shifted" by k through the addition of k more rows to YD[A]. See fig. 
4(c). In a duality symmetric approach one could also consider shifting in both hori- 
zontal and vertical directions. 

11. G e n e r a l  t r a n s f o r m a t i o n s  

The general idea behind the present approach may be viewed as an extension of 
a distance idea generally applied on suitable equivalence-class partitioned sets. In 
this latter approach the distance is taken as the minimum number of specified ele- 
mentary transformational steps needed to transform a member from one equiva- 
lence class to another. For example in considering the strings of letters from an 
alphabet, the minimum number of letter substitions needed to change one string 
into another is known [50] as the Hamming distance [51], of importance in linguis- 
tics, computer science, and coding, including genetic codes. Presumably too such 
distances could be of relevance for graph codes, appearing [52] as strings of binary 
digits. Extending the elementary transformations to include insertions and dele- 
tions in addition to substitions gives Levenshtein's [53] distance. The present poset- 
mediated results may be viewed to consider the distance di to correspond to the 
minimum number of elementary transformational "steps" to bring two considered 
objects of f~ to be ordered in opposite senses - that is, for A, B C f~ we may let A' 
and B' be the minimally transformed members of p via numbers a and/3 of elemen- 
tary transformational steps such that A' _ B and B ~ >-_ A and then take the distance 
between A and B to be minimal 

d(A, = +/3.  

To regain the Hamming-Levenstein approach the conditions A I ~ B and B / ~ A 
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are replaced by A / ~ B and B ~ ~ A. For the present partially ordered circumstance 
we may define d ( A / "  B) - ~ - 13 as a relative coordinate. 

Besides our general examples of  sections 2 and 8, the distance function of  Kemeny 
[54] provides another example. This is on the set p of  subsets of  a parent set S with 
the partial ordering __. being set inclusion and the elementary transformations being 
addition of  single elements of  S to a subset. More precisely in Kemeny's  language 
this distance between sets A and B is the order of the symmetric difference 

A O B  = - {a ~ A  la ~ B} U {b C B i b  ~ A } .  

The orders of  these two identified subsets in A O B may be differenced to obtain re- 
lative coordinates, analogous to the d " ( A / "  B) and d(A 7 B) of section 8. 

Yet another  example involves the so-called [55] "chemical distance" between 
molecular structures. Here p is a set of  (e.g. molecular) graphs involving a common 
set of  vertices, the (reverse) partial ordering ___ is taken as the subgraph relation, 
and each elementary tranformational step is taken to be the addition of  an edge. 
This chemical distance also is described [53] as the min imum number of  bond 
breaking/making  steps or as the number  of  valence electrons redistributed during a 
reaction, and as such is related to a classical [56] "principle of min imum structural 
change" in the course of  a chemical reaction. This same poset has also been empha- 
sized [ 18,57] in making chemical "cluster expansions". Our comments  concerning 
the possibility of  relative coordinates evidently extend this earlier work. 

Even more generally for an arbitrary discrete poser ~o we might take the elemen- 
tary transformational  steps to be (increasing) steps between ordered elements 
such that there are no intermediates between the two elements. 

Part of  the extension of  earlier sections also has to do with the treatment of  con- 
t inuous transformations (such as our dilitations or shiftings) instead of discrete 
ones. Thus continuous groups may be involved as noted at the end of section 3. But 
too sometimes there are alternative possible approaches - e.g., for closed subsets 
of  Euclidean spaces E with measure function # (such as area for the 2-dimensional 
case) one can identify a distance function 

d ( A , B ) = # ( A O B )  

analogous to that for finite sets in terms of [ A e B I. Another  manner  of  using a 
"measure"  to yield a distance function (on molecular conformations) is found in 
Mezey [28]. 

12. Multi-posets and periodic law 

So far only a fraction of the potential applications of posets have been indicated. 
Even in elementary chemistry texts m a n y "  rules of  thumb"  are given which in effect 
make partial orderings of various chemico-physical properties (melting points, 
boiling points, electronegativities, solubilities, reactivities, etc.) For  example, the 
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ionization potentials of elements arranged in a suitable typical periodic chart gener- 
ally decrease in proceeding down columns and in proceeding right-to-left across 
rows, so that while some pairs of elements have ionization potentials ordered by 
this n~e, others pairs do not (and in particular a pair for which one traces a path 
from one element to the other by going leftward then upward in the periodic chart). 
Indeed, the periodic chart can be viewed as what we might call a multi-poser,  where 
there are ordering links along both vertical and horizontal directions but orderings 
are to be in different directions (interchanging upward versus downward and/or  
leftward versus rightward) for various properties. Here too we allow for the possi- 
bility of simultaneous orderings in opposite directions giving rise to equivalences, 
so that the different vertical columns or horizontal rows may be different equiva- 
lence-class partitionings. An admirable periodic-chart presentation encoding such 
features is that essentially of Bayley, Thomsen, Margary and Bohr [58] as indicated 
in fig. 5. In addition sometimes one may have further orderings between A and B 

Fig. 5. A "poset-potent" representation of the standard periodic chart of the elements. 
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(or even B and C) columns as suggested by their slightly different levels in the fig- 
ure. Thus somewhat as in Sanderson's fundamental book [3], Chemical Periodicity, 
may be viewed largely as an identification of the different partial orderings (includ- 
ing equivalences) realized by this multi-poset, along with a specification of which 
properties associated to the different posets. For instance, (first) ionization poten- 
tials decrease going downward along solid lines in fig. 5 while they increase going 
left-to-right along rows, with a break just before column IIIA. On the other hand 
Sanderson's [3] nonpolar covalent radii decrease in both these directions, now how- 
ever with a break just before column VIIIA. Occasionally one finds exceptions to 
the desired orderings, but often they are associated to one of the "breaks" appear- 
ing in the form of the chart in fig. 5. 

But in chemistry there are rules of thumb involving not just elements but sets of 
compounds too. Sometimes these rules of thumb for properties of compounds are 
even presented as "periodic tables" for a class of compounds - e.g., see, Randid's 
[59] "periodic table of the alkanes" (appearing on the cover of issue no. 9 of volume 
69 of the Journal of Chemical Education), or see Dias' [60] "periodic table ofbenze- 
noids". Indeed Dias has suggested [61] that such periodic tables are in some way 
related to posets. In such cases one might likely have further multi-posets. A highly 
systematic approach to deal with molecules is simply to consider repeated Carte- 
sian products of the periodic table, whence (for the case of the binary product 
describing diatomics) one might develop Cartesian product posets as indicated at 
the end of section 6. Hefferlin and co-workers [62] as well as Kafarov and co- 
workers [63] indeed take approaches of this sort. Thus, it seems that not only are 
posets manifested in a great diversity of manners in chemistry, but too they are very 
fundamental. 

13. Conc lus ion  

The ubiquity of posets in chemistry has been emphasized. A novel comparison 
scheme which leads to the introduction of metrics on posets ~ has been defined, 
with special reference first to scaled posets and second to shifted posers, though 
extensions beyond these classes of posets have been considered too. Notably the 
results have been indicated to have potentially very wide applicability in chemistry, 
though presumably the range of applicability should extend to many other sciences 
as well. Hopefully the new descriptors and descriptions will find utility, the descrip- 
tors being in a few cases (especially in the earlier sections) being built up in a mathe- 
matically "canonical" way from related invariants (sometimes) already 
introduced for chemical applications. In the later sections (8-11) the ideas in parti- 
cular cases seem often to correlate with some already introduced ideas (though 
often not so widely recognized in chemistry). The view taken here is quite wide, 
encompassing many such particular cases. 
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Appendix  

In this appendix we wish to establish theorem A' of section 4, whenceafter theo- 
rems B', C' and D' follow fairly straight forwardly. Here R(A / B), A(A / B) 
and IA / B) are abbreviated to R +, A+ and ~,+, while R(B / A), A(B / A) and 
IB / A) are abbreviated to R - ,  A_ and ~,-. The components or elements o f t / '  and 
R ° are denoted @ and/)Ts, for cr = + or - .  

As a first step towards proving theorem A' we introduce new (soon to be used) 
vectors 0% with components 

where naturally -or denotes the opposite sign from or. The factors {¢ are chosen to 
satisfy a "normalization" condition 

¢°tO~ = 1 

with the superscript ]- indicating a transpose, and one thus has 

s 

The various divisions here by components of ~° are all permitted since R ~ being a 
Frobenius-Perron matrix [30] gives maximum-eigenvalue eigenvectors with all 
components positive. Now recalling that ~" is an eigenvector to R% we have 

+ + + A+A_ = (O+tR+~,+)(¢-tR-O -) = ~ O, R,,% y ~  zbtRLO 2 
r s  t u  

and via the Cauchy-Schwarz inequality 

[,~,(O+R+,I,+~l/2(, / ,_R_O_~I/2 ] 2 k+k_1>/z_, , , r.~','s, ' " - ' r s ~ s  / / " (A.1) 
L rs j 

But noting R+R~ = 1 and recalling the definitions ofO" and ~ ,  one obtains 

/~+'~-~ I r~s (O+~r'l/2(~D+Os'l/212 = [~(~3r/~r+~+'l/2 ~--~(~/~+/ffJs~--'l/2] 2 s  
= {+~_. (A.2) 
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Next via a second application of the Cauchy-Schwarz inequality 

so that 

A+A_ >~N 2 . 

Now in our present notation c~ = A~,~ t~(¢ tg~)  -2, where ~b is the column-vector 
of all ones, whence 

c+c_ = A+A_(0+tO+)(O-f0-)(~bt0+)-2(~bt~b-)-2 ~>A+A_(~bt~b) -2 , (A.3) 

where yet again we have used the Schwarz inequality. But noting ~b*¢ = N and com- 
bining this with the equation preceding (A.3) we have 

c+c_>~ l , 

which is close to what we desired to prove for theorem A'. 
It remains to check to see under what conditions it might happen that 

c+c_ = 1. Indeed equality applies iffthe set of Cauchy-Schwarz inequalities ofeqs. 
(A: 1), (A.2) and (A.3) each become equalities - such happening iff pairs of "vec- 
tors" involved become linearly dependent. For eq. (A.3) this condition is that there 
exist ko such that 

~'~ = k~¢ 

(where again ¢ is the vector of all ones). Thence also from the first equations of 
this appendix 

O~={k_~/(k, ,)2~,~}¢ and ~ , , = k _ ~ / k ~ .  

Next this form for 0 ¢ leads to the satisfaction of equality in conjunction with 
(A.2). For eq. (A.1) the condition of equality implies that there is a k • 0 such 
that 

o r  

+ + 
or R,.sCs = k¢-; 0-; 

But this implies that Rrs can be written in the form Rrs = aras, so that the eigensolu- 
tion for A+ becomes 

ar(af~b) = Z aras¢+ = A+¢+" 
s 

Thence ar is independent of r and ¢+ is independent ofs. That is, 
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R = a2J, 

where J = 4,~ t is the matrix of  all ones and ~ ~ ¢,, in agreement with the equality 
condition for (A.3). Thus the equality c+c_ = 1 occurs iff  the underlying matrices 
D ( A )  and D(B)  are the same up to a scale factor (of  a2), i.e., equality occurs iff  
A ~ B .  
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